CALU: A Communication Optimal LU Factorization Algorithm

نویسندگان

  • Laura Grigori
  • James Demmel
  • Hua Xiang
چکیده

Since the cost of communication (moving data) greatly exceeds the cost of doing arithmetic on current and future computing platforms, we are motivated to devise algorithms that communicate as little as possible, even if they do slightly more arithmetic, and as long as they still get the right answer. This paper is about getting the right answer for such an algorithm. It discusses CALU, a communication avoiding LU factorization algorithm based on a new pivoting strategy, that we refer to as tournament pivoting. The reason to consider CALU is that it does an optimal amount of communication, and asymptotically less than Gaussian elimination with partial pivoting (GEPP), and so will be much faster on platforms where communication is expensive, as shown in previous work. We show that the Schur complement obtained after each step of performing CALU on a matrix A is the same as the Schur complement obtained after performing GEPP on a larger matrix whose entries are the same as the entries of A (sometimes slightly perturbed) and zeros. More generally, the entire CALU process is equivalent to GEPP on a large, but very sparse matrix, formed by entries of A and zeros. Hence we expect that CALU will behave as GEPP and it will be also very stable in practice. In addition, extensive experiments on random matrices and a set of special matrices show that CALU is stable in practice. The upper bound on the growth factor of CALU is worse than of GEPP. However, there are Wilkinson like-matrices for which GEPP has exponential growth factor, but not CALU, and vice-versa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LU factorization with panel rank revealing pivoting and its communication avoiding version

We present the LU decomposition with panel rank revealing pivoting (LU PRRP), an LU factorization algorithm based on strong rank revealing QR panel factorization. LU PRRP is more stable than Gaussian elimination with partial pivoting (GEPP), with a theoretical upper bound of the growth factor of (1+ τb) n b , where b is the size of the panel used during the block factorization, τ is a parameter...

متن کامل

Calculs pour les matrices denses : coût de communication et stabilité numérique. (Dense matrix computations : communication cost and numerical stability)

This dissertation focuses on a widely used linear algebra kernel to solve linear systems, that is the LU decomposition. Usually, to perform such a computation one uses the Gaussian elimination with partial pivoting (GEPP). The backward stability of GEPP depends on a quantity which is referred to as the growth factor, it is known that in general GEPP leads to modest element growth in practice. H...

متن کامل

Communication-optimal Parallel and Sequential QR and LU Factorizations

We present parallel and sequential dense QR factorization algorithms that are both optimal (up to polylogarithmic factors) in the amount of communication they perform and just as stable as Householder QR. We prove optimality by deriving new lower bounds for the number of multiplications done by “non-Strassen-like” QR, and using these in known communication lower bounds that are proportional to ...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

Performance Predictions of Multilevel Communication Optimal LU and QR Factorizations on Hierarchical Platforms

In this paper we study the performance of two classical dense linear algebra algorithms, the LU and the QR factorizations, on multilevel hierarchical platforms. We note that we focus on multilevel QR factorization, and give a brief description of the multilevel LU factorization. We first introduce a performance model called Hierarchical Cluster Platform (Hcp), encapsulating the characteristics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011